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Abstract - Because of the size and the increasing quantity of 

remote sensing marine images, tools are needed for 

computer-aided research. Automated eddy detection 

methods are fundamental tools to study mesoscale eddies 

from the large datasets derived from satellite images. In this 

work, mesoscale ocean eddies are characterized by currents 

that flow in a roughly circular motion around the center of 

the eddy, the sense of rotation of these currents may either 

be cyclonic or anticyclonic, and a new algorithm is 

presented to detect eddy centers based on a supervised 

learning method using support vector machines. A structural 

statistical feature (SSF) kernel function is introduced in 

order to favor the distinction between eddy centers and other 

points. The method learns a generic model for mesoscale 

eddy by using the SSF of training examples. The algorithm 

has been applied to over 24 years of AVISO MSLA data 

derived from current sea data in the global area. 

Keywords - Eddy detection, Kernel methods, SVM, MSLA, 

Sea current. 

I. INTRODUCTION  

Mesoscale eddies are common in the ocean. They are 

between about 10 and 500 km in diameter, and persist for 

periods of days to months, and are characterized by currents 

that flow in a roughly circular motion around the center of 

the eddy, the sense of rotation of these currents may either be 

cyclonic or anticyclonic. Mesoscale eddies are ubiquitous 

features in the ocean  [1-5]. For oceanic mesoscale eddies are 

usually made of water masses that are different from those 

outsides of the eddy. The water within an eddy usually has 

different temperature and salinity characteristics to the water 

outside of the eddy.  Because eddies may have a vigorous 

circulation associated with them, they are of concern to naval 

and commercial operations at sea. Further, eddies transport 

anomalously warm or cold water as they move. They have an 

important influence on heat transport as well as ocean 

circulation in certain parts of the ocean[4, 6]. They also have 

effects on biological productivity, upper ocean ecology, 

biogeochemistry, and fish larvae transportation[7-11]. In the 

past few years, several studies have focused on the statistical 

analysis of mesoscale eddy activity within specific regions 

through the analysis of satellite measurements or results from 

numerical models [12,13]. So it is important to develop and 

implement an algorithm for automatic identification and to 

track mesoscale eddies to advance research in this area. The 

aim of this paper is to present a new supervised eddy 

detection method using 24 years of sea level anomaly 

(MSLA) data to quantitatively investigate the mesoscale 

activity and examine its Spatio-temporal variability.  

 

The rest of this paper is organized as follows. Section 2 

describes the background of current sea derivation and 

existing eddy detection methods. The proposed supervised 

eddy center detection algorithm and the method to label 

eddies are presented in Section 3. Section 4 gives out the 

experiment results and comparison with other methods. 

Some statistical analyses of detected eddies are also 

described in this section. Finally, Section 5 presents the 

conclusion. 

II. BACKGROUND 

A. Sea Current Derivation 

The algorithm was developed to detect eddy from a 

current sea field derived from the MSLA field. The MSLA 

dataset analyzed here is the 24.5 years (October 1992–March 

2017) of the 1/4° latitude by 1/4° longitude global gridded 

version of the SSH fields in the AVISO Reference Series. 

Sea surface velocity can be calculated using the geostrophic 

relation: 

                         .
g hu

f y
= −


                   (1)  

                         .
g hv

f x
= −


 

Where u    v  are the surface velocity(positive eastward 

and positive northward), g is the gravitational acceleration, 

and  
2 sinf = 

 (

5 1
7.29 10 s

− −
 = 

 ,    is the latitude) 

is the Coriolis parameter, x  , 
y

  is the distance on two 

directions, and h   is the MSLA? To generate a continuous 

estimate of  u  and v   across the equator, a Gaussian 
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adjustment [14] is adopted to calculate the sea current near the 

equator ( 5 Lat). 

B. Eddy detection 

Existing automatic eddy detection methods mainly fall 

into two categories, and one is based on the distribution of 

physical parameters usually computed from velocity 

derivatives; the other is derived from the geometric 

characteristic of velocity streamlines around minima or 

maxima of MSLA[15].  

 

One of the most widely used physical parameters based 

eddy detection algorithm is developed [16], based on the 

Okubo-Weiss parameter [17] that indexes the relative 

importance of strain and vorticity in the flow as  
2 2 2

W
s ns s= + −

                                        (2)  

where 
ss , 

ns  and   are the shearing deformation rate, 

the straining deformation rate, and the vorticity. Since the 

velocity field within a vortex is dominated by rotation, ocean 

eddies are generally characterized by negative values W . 

For this reason, a value can be set as the threshold to identify 

an eddy. Although this method is often used to extract eddies 

from MSLA data, some studies have shown limitations of the 

method. For example, it needs to specify a threshold value 

from which eddies are defined, but the value has to be 

adjusted according to the varying eddy location and other 

properties, and during the computation of the method, it will 

amplify the noise of the MSLA field. The problem is even 

more complicated at low latitudes. 

 

The second type of eddy identification technique is 

based on the geometric characteristics of the sea current. The 

winding-angle method detects closed streamlines via 

measuring cumulative changes in streamline direction, and a 

streamline is associated with an eddy if its winding-angle is 

higher than 2 . This method has a higher chance of 

successfully detecting mesoscale eddies. However, it comes 

at a higher computational cost. Francesco Nencioli [18] 

presented an eddy detection algorithm based on four 

geometric constraints, which include: velocity change 

tendency along east-west and north-south section, local 

velocity minimum point, and a current sea direction changing 

the rule. A limitation of this method is it needs two 

parameters that have to be carefully selected in accordance 

with data resolution.    

III. DETECTION OF EDDY CENTER 

A. Support Vector Machine 

This section will describe the principle of SVM in a 

linear separable case. SVMs represented an approximate 

implementation of the structural risk minimization(SRM) 

principle and were first introduced by Vapnik [19] to solve 

pattern recognition and regression estimation problems. 

Given a set of training examples 1( , ) i Ni i
yx    

d

ix R , d  

is the dimension of the input space  1,1
i

y  −  is the class 

label which  
ix  belongs to. The aim is to find a hyperplane 

that divides the set of examples such that all the points with 

the same label are on the same side of the hyperplane. The 

general form of linear classification function is 

( )g x w x b= + , which corresponds to a separating 

hyperplane 0w x b+ = . Among the separating hyperplanes, 

the one for which the distance to the closest point is maximal 

is called the optimal separating hyperplane(OSH). Since the 

distance to the closest point is 
1

w , finding the OSH 

amounts to minimizing 
2

w  under the constraint. It means 

that there are two hyperplanes parallel to the classifier 

hyperplane, which are going to lean against the nearest data 

in order to center as well as a possible classifier between 

both classes. The quantity 
2

w  is called the margin, and it 

can be seen as a measure of the generalization ability. So it 

becomes an optimization problem to find the classifier which 

maximizes the Euclidian distance between both hyperplanes. 

If we denote by 1( ,... )N   the N non-negative Lagrange 

multipliers associated with constraints, our optimization 

problem amounts to maximizing 

1 1

1
(

2

N N

i i j i ji j i j
W y y x x  = =

) = − 
  (3)  

With 0i   and under constraint 
1

0
N

ii i
y=

= . This can 

be achieved by the use of standard quadratic programming 

methods. The solution can be expressed by terms of the 

linear combination of the training vectors as 

1

N

i ii i
w y x==

                             (4)  

Only a few 
ia  will be greater than zero. The corresponding 

ix  is the support vectors, which lie on the margin and 

satisfy ( ) 1g x = . The classification function can thus be 

written as  

1
( ) ( )

N

i ii i
f x sign x by x== +

                     (5)  

However, in most cases, we cannot find a linear classifier 

consistent with the training set: the classification problem is 

not linearly separable. One solution is to map the input data 

into a high-dimensional feature space through some 

nonlinear mapping.  In this feature space, the OSH is 

constructed. 

If we replace x  it by mapping it in the feature space ( )x , 

the dual representation of the optimization problem is then 

given by the following formula: 
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1 1 1

1
( ( ) ( )

2

N N N

i i j i ji i j i j
W y y x x   = = =

) = −  
 (6)  

Finding the mapping   is a very difficult problem. Instead of 

searching for  , it is easier to search directly for a kernel 

function K  defined ( , ) ( ) ( )
i j i j

K x x x x =  to satisfy 

Mercer’s condition. Finally, the decision function becomes 

1
( ) ( ( , ) )

N

i i ji i
f x sign K by x x== +

  (7)  

B. Structural Statistical Kernel 

The kernel framework is particularly favorable to eddy 

detection problems because it creates a natural separation 

between the learning framework and known eddy 

characteristics that are necessary to craft a meaningful eddy 

representation. In this study, the mesoscale eddies to detect 

in sea current images are characterized by currents that flow 

in a roughly circular motion around the center of the eddy, 

and they aren’t linearly separable. This section describes the 

construction of a kernel function based on structural 

statistical information. 

 

Given a sea current image tile, the velocity is 

represented by a two-dimensional vector ( , )u v corresponding 

to a position in a sea current space. The tile is divided into 

four parts, and as Figure 1 shows, four values can be 

obtained by counting the number of times each u  is higher 

than 0 in the four parts. This value demonstrates the 

distribution of directions in a quarter. Four other values can 

be obtained by summing up the value of each u  in the four 

parts. This value demonstrates the merging sea current in a 

quarter, in the same way, eight more values can be 

determined from v . The computation of the SSF feature is 

described in formula 8. 
2

4

1 1
( )

ii

n
sv u=

=
                                         

    
1    0

let  ( )
0     

i

i

with
s

otherwise

u
u

 
= 


                          (8)     

2

4

2 1 ii

n
v u=

=
                                                   

In this way, the current sea data can be projected into a new 

structural statistical space E, and the sea current image tile 

can be represented by a 16-dimensional vector 

1 2 16
, ,...,v v v  , as the following figure shows. For that, we 

introduce the mapping 

1
:

s sVT →
                                               (9) 

where 
sT  is a tile data and 

sV  is a 16-dimensional vector. 

The graphical representation of this projection is shown in 

Figure 1. 
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Fig. 1 Examples of SSF extraction, positive case (top) and negative case 

(bottom) 

 

We compose the final SSF kernel function with a 

Gaussian kernel gK  in order to obtain a robust kernel. A 

Gaussian kernel is useful because it enables the calculation 

of similarity in the space of infinite dimension.  Finally, we 

obtain the following kernel function: 

( , )
s t

ET T                       (10)  

( )
2

21 1
( , ) ( ), ( ) exp( )

2

s t

s t g s t
K

V V
T T K T T 

−
= = −



                   

Where   is the variance of the Gaussian kernel? The 

lower the value of , the better the learning of an example. 

In the experiment, it’s set to be 0.05 to avoid the over-

learning phenomenon. 

C. Processing Workflow 

The proposed approach is designed to detect multiple 

eddies at different locations in an input sea current image. 

The overall architecture of the eddy detection approach is 

illustrated in the following figure. One essential component 

of the proposed approach is an eddy detector, which uses 

SSF as object representation. In this approach, the eddy 

detector is formed as a hierarchical classifier that combines 

histogram matching and a support vector machine.  
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Fig. 2 Workflow of Eddy Detection 

 

Eddy center detection is a two-stage process: A training 

stage and an eddy detection stage. 

 

The training stage constructs a model of support vectors, 

which is used later for classification during the eddy 

detection stage. During the training stage, the SVM is trained 

using a sample image as input. 16-dimensional structural 

statistical vectors will be extracted using the mapping 

algorithm noted above, and the SVM will then be used to 

train these vectors that, in turn, will generate support vectors 

as the model output.  

 

During the eddy detection stage, given a shape dataset S 

of size m, a brute force algorithm is utilized to find the 

eddies. Each image is traversed to get tiles in the same size 

as tiles in the training set using the sliding window method. 

The structural statistical vector of each tile is extracted using 

the foresaid mapping. We use the SVM to classify whether 

this tile is eddy with the help of the training model. The 

detector is applied at every location in the current sea image 

in order to detect eddies anywhere in the image. The flow 

chart of this algorithm is shown in Fig. 3. 
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Fig. 3 Flow chart of brute force eddy detection algorithm 

IV. EXPERIMENT AND COMPARISON 

The algorithm presented here has been applied to current 

sea data derived from MSLA published by AVISO in a 

globally uniform 1/4° latitude by 1/4° longitude grid. In the 

training stage, 895 training tiles (409 positive cases and 486 

negative cases) were used, and a model composed of 91 

support vectors was generated. Then the model was used to 

detect eddies from 912 global sea current data. 

Comparisons between detected eddy centers and MSLA 

field, current sea field, and OW parameter were made to test 

the detection results. This figure shows the eddy centers 

overlay OW parameter and current sea field. This 

comparison indicates that the eddies are well detected, and 

they are in the center of every vortex.  

 
Fig. 4 Sea current and eddy centers, the black ‘*’ presents eddy center 

 

This figure shows the eddy centers overlay MSLA field. 

It can be seen that every detected eddy center lies at the 

extremum point in the MSLA field. The MSLA contour-

based eddy detection algorithm uses two thresholds(over 0 

and below 0) of MSLA to identify an eddy. However, Fig. 6 

shows that inside these kinds of detected eddies still lies 

smaller cyclonic or anticyclonic structures. The SSF based 

algorithm can recognize these details inside an MSLA 

contour, and it detects more eddies than the MSLA contour-

based eddy detection method. 

 
Fig. 5 MSLA and eddy centers, the black ‘*’ presents eddy center 

 

We have also tested our method on a data set of 6374 

image tiles, including 1723 eddy cases and 4651 non-eddy 

cases. The eddy data set is from the result of the OW 

algorithm, which was visually inspected in the current sea 

field. The method performs well on both the true and false 

cases, with a detection accuracy of 97.6%. One potential 

explanation for the 2.4% false detection rate is that in some 

cases (see Fig. 8 for examples), the area between two strong 
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sea currents can form a very long-shaped eddy. When 

applying the eddy detection algorithm to this area, the SSF 

extracted from these center tiles is similar to the SSF of the 

non-eddy area between two strong sea currents. Because of 

the small differences in SSF, some eddies were detected by 

mistake, and some real eddies were ignored.  

 

 
Fig. 6 False case of eddy detection 

 

Fig. 7 shows the distribution of eddy centers for eddies 

with a lifetime>=4 weeks, and mesoscale eddies can be 

found nearly everywhere in the world ocean; interestingly, 

there are some filaments of non-eddy areas that exist in the 

southern ocean and areas close to Asia and the American 

continents. Comparison between the top and bottom image 

shows that only a small part of the mesoscale propagates 

eastward, and these eastward propagation eddies are 

concentrated mainly in area 40-60 degrees south latitude. 

 

 
 

 
Fig. 7 Statics of eddy centers, for eddies with life time>=4 weeks that 

passed through each 1/4° by 1/4° region. (Top) all detected eddies, 

(Bottom) eastward propagation eddies.  

 

 

 

V. CONCLUSION AND FUTURE WORK 

This study proposed a structural statistical feature-based 

eddy detection approach. This method is based on statistical 

learning and kernel function theory; it automatically extracts 

statistical information from sea current image tiles and learns 

a hierarchical classifier by combining histogram matching 

and support vector machine. Experiments show high 

detection rates with a low number of false detection. These 

results illustrate the high discriminant power of the SSF 

based eddy detection approach. As an extension of this work, 

the SSF based eddy detection method is investigated for sea 

surface temperature data. The ongoing work includes 

extracting more eddy properties and using the result data for 

further statistical analysis and prediction application. 
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